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Abstract — This paper presents a novel method for constructing
Low Density Parity Check (LDPC) codes with a girth of up to 8.
These codes are based on the structural properties of finite lattice
geometries. Results are presented which show that these codes per-
form well over awgn channels with iterative decoding. These codes
also have several implementation advantages, which are presented.

I Introduction

Low Density Parity Check (LDPC) codes were first
introduced by Robert Gallager of MIT in 1960 [1].
They remained unused until they were rediscov-
ered by MacKay in 1997 [2]. LDPC codes are
proven to be very good, in that sequences of codes
exist which, when optimally decoded, achieve in-
formation rates up to the Shannon limit.

LDPC codes are a type of block code defined
as the null space of a binary parity check matrix
H. The term ’low density’ refers to the sparse-
ness of the H matrix. LDPC codes are divided
into two categories, regular (Gallager) codes and
irregular codes. The column and row weights of
regular LDPC codes are constants, p and v re-
spectively where both p and 7 are small compared
to the codeword length n. An LDPC code is irreg-
ular if its row or column weights vary. Irregular
LDPC codes have been shown to outperform regu-
lar LDPC codes, however regular codes have some
implementation advantages.

LDPC codes can be represented by a Tanner
graph. Each column in the H matrix represents
a variable node 7 and each row a constraint node
k. Nodes j and k are connected by an edge iff the
element of the H matrix (%, j) is non-zero. Fig. 1
shows the tanner graph of the code given by;
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A cycle in the code is a closed path along edges.
The cycle fo,co, f1,ca, f2,c1, fo is highlighted in
fig 1. The girth of the code is the length of the
shortest cycle. Most randomly constructed codes
have a girth of four. For codes with short cycles
in their Tanner Graph, iterative decoding becomes
correlated after a small number of iterations and
decoding may not converge or may converge more
slowly.
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Fig. 1: The Tanner graph of H given in (1).

LDPC codes are usually decoded using a mes-
sage passing algorithm. The algorithm acts locally.
Each variable and constraint node gathers infor-
mation from and passes information to its neigh-
bouring nodes. This process continues until it con-
verges to a valid codeword or a maximum number
of iterations is reached. The message passing algo-
rithm is optimum in the case of a graph with a tree
structure i.e. containing no cycles. One means of
improving the performance of the message passing
algorithm to decode LDPC codes in to increase
the girth of the Tanner graph defined by the code.
This increases the number of iterations necessary
for information to be passed around a cycle in the



code and makes the code more tree-like.

Several geometric methods of producing LDPC
codes have been presented, see for example [3] and
[4]. Codes produced in this manner have a girth
of 6.

In section 2 a novel method of constructing
LDPC codes based on a finite lattice geometry is
presented. These codes have a girth of up to 8.
This is an improvement on previous geometric con-
structions whose girth was limited to 6. Section 3
contains details of the advantages this construction
yields in practical implementations. Section 4 con-
tains results which show that these codes perform
well over an AWGN channel. Section 5 concludes
the paper.

II Code Construction

The code construction proposed is based on a reg-
ular finite lattice, see Fig 2 and 3. Points in
this lattice represent variable nodes. Bundles of
parallel lines are drawn on the lattice, represent-
ing constraint nodes. A variable j participates in
the constraint £ iff the point j intersects the line
k. Choosing bundles of parallel lines such that no
two points have more than one line in common en-
sures that no cycles of length four exist. If the
bundles of parallel lines are chosen such that no
group of three bundles of parallel lines are linearly
dependant then the girth of the code rises to 8.

Examples

Ezample 1

Fig 2 shows a 2 dimensional finite lattice of
size 4 X 4. 3 bundles of parallel lines are drawn.
As this is a finite lattice with each side of length
4, arithmetic is conducted modulo 4. Lines wrap
around the lattice, as shown in the case of the line
(2,0), (3,1), (0,2), (1,3) highlighted. There are 12
lines drawn in 3 bundles of 4. Each line contains
4 points. This example gives a regular code with
16 variable nodes and 12 constraint nodes. The
column and row weights are 3 and 4 respectively.
As no two points are contained together in more
than one line, no cycle of length 4 can exist. The
girth of this code is 6 and an example of a loop of
length 6 is highlighted.

Ezample 2

Fig 3 shows a 2 dimensional finite lattice of size
4 x 4. 2 bundles of parallel lines are drawn. Each
line contains 4 points. This is example gives a reg-
ular code with 16 variable nodes and 8 constraint
nodes. The column and row weights are 2 and 4
respectively. In this case the bundles of parallel
lines chosen are linearly independent so no loop of
length 6 can exist, see theorem 2.1. The short-
est cycle in this code is of length 8 and a cycle of
length 8 is highlighted.

Theorem 2.1

A code constructed by this method using bundles
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Fig. 2: A finite lattice geometry of size 4 X 4 showing
three bundles of parallel lines. One line is highlighted as
an example of how lines wrap around the finite lattice.
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Fig. 3: A finite geometry of size 4 X 4 showing two linearly
independent bundles of parallel lines.

of parallel lines where any set of three bundles is
linearly independent has a girth of at least 8.

Proof:

Assume that the code contains a length 6 cycle.

Three mon-zero wvectors in the direction of the
lines in the geometry must sum to zero for the cycle
to be closed.

This violates the condition that any three vectors
are linearly independent.

Therefore the original assumption must be false
and the code cannot contain a length 6 cycle.

The condition that no two points have more than
one line in common ensures that no cycles of length
4 exist in the code.

The code then must have a girth of at least 8

In both examples shown a regular code was con-
structed by choosing a cubic lattice, i.e. a lattice
with the same number of points in each dimen-
sion. The row weight of the code can be varied by
varying the number of points in each dimension.
The column weights of the H matrix can be varied
by omitting some of the lines from the construc-
tion, this is the equivalent of removing rows from



the H matrix or constraint nodes from the Tanner
Graph. Irregular codes can be constructed by this
method by varying the row or column weights or
a combination of both.

III Decoding

Parallel hardware implementation of a message
passing decoding algorithm requires each node in
the Tanner Graph of the code to be implemented
physically on a chip. As the length of the code
increases, implementing the edges connecting the
nodes as connections on the chip represents an in-
creasingly difficult routing problem. This limits
the length of a code which can be implemented.
In other implementations the interconnections are
stored in memory. The amount of memory this
requires can limit the size of a code.

Geometrically constructed regular LDPC codes
mitigate against both these problems. As these
codes are constructed according to geometric rules
rather than randomly constructed, the intercon-
nections between the nodes in the code’s Tanner
Graph do not need to be stored individually in a
decoder’s memory. The Tanner Graph can be con-
structed knowing only the nature of the geometry
representing the variable nodes and which parallel
bundles of lines representing constraint nodes are
to be used.

The regular LDPC codes presented here can be
written in the form:

H,
e @)
H,

where each H,, is a matrix with column weight of
1 and a constant row weight. This allows partly
parallel implementation of the turbo decoding al-
gorithm presented in [5]. This algorithm offers
reduced memory requirements, reduced routing
complexity and improved decoder throughput over
message passing decoders.

IV REsSULTS

This code construction was tested over an AWGN
channel and decoded using a message passing algo-
rithm with a maximum of 20 iterations, see Fig. 4
The codes tested were constructed using four bun-
dles of parallel lines in an 8 x 8 X8, 3 dimensional fi-
nite lattice. In the case of the girth 8 code, the four
parallel bundles of lines were chosen such that any
three were linearly independent, they were chosen
randomly in the case of the girth 6 code, subject
to the condition that no two points had more than
one line in common. Both of these codes had 301
information bits giving a rate of 0.59. For compar-
ison, a code was constructed randomly with a row
weight of 8 and column weights of 3 and 4 to give

a length 512, rate 0.59 code. These results show
that a Lattice geometry code of girth 8 outper-
forms a randomly constructed code by over 0.3dB
at a BER of 1073,
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Fig. 4: BER for length 512 rate 0.59 codes. The lines,
from left to right are Finite Lattice codes of Girth 8 and
Grith 6 and a randomly constructed code.

V  CONCLUSION

This paper presented a novel method for construct-
ing LDPC codes based on finite lattice geometries.
These codes have a girth of up to 8. It was shown
that these codes have some implementation ad-
vantages and that they perform well over AWGN
channels.
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