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Abstract This paper presents a novel method
for constructing LLow Density Parity Check (LDPC)
codes with a girth of up to 8. These codes are
based on the structural properties of Finite Lattices.
Results are presented which show that these codes
perform well over AWGN channels with iterative
decoding.

1. Introduction

Low Density Parity Check (LDPC) codes were
first introduced by Robert Gallager of MIT in 1960
[1]. They remained unused until they were redis-
covered by MacKay in 1997 . LDPC codes are a
class of linear block codes which have been shown
to achieve near-capacity performance on the AWGN
channel when decoded using a message passing al-
gorithm. Algebraic and combinatorial constructions
of LDPC codes have received much attention over
the past decade since such constructions generally
yield codes with lower implementation complexity
than do pseudo-random constructions [2], [3].

LDPC codes are usually decoded using a message
passing algorithm. The algorithm acts locally. Each
variable and constraint node gathers information
from and passes information to its neighbouring
nodes. This process continues until it converges to a
valid codeword or a maximum number of iterations
is reached.

The message passing algorithm is optimum in the
case of a Tanner Graph with a tree structure i.e.
containing no cycles. One means of improving the
performance of the message passing algorithm to
decode LDPC codes is to increase the girth of the
Tanner graph defined by the code. This increases
the number of iterations necessary for information
to be passed around a cycle in the code and makes
the code more tree-like.

Several geometric methods of producing LDPC
codes have been presented, see for example [3] and
[2]. In [2] a method for generating an LDPC Code
based on a 2 dimensional Finite Lattice is presented.

[3] presents a method of generating a girth 6 LDPC
code based on Euclidian Geometries and [4] extends
modifies this work to produce girth 8 codes.

Section II of this paper describes the construction
of two classes of LDPC codes based on a Multidi-
mensional Finite Lattice. The first can be viewed
as an extension of the work in [3] from two to
m dimensions. A lower bound on the minimum
distance of the code is derived as well as equations
for the number of proper 8 cycles. This section also
introduces a second, more general, class of LDPC
codes based on Lattice Geometries. These codes
can be viewed as a generalisation of the first codes
introduced and also as an extension of the work in
[2] and [4] from Euclidian to Lattice Geometries.
Section IIT presents simulation results, and section
IV concludes this work.

II. The Lattice Construction

In this section we introduce two methods of
constructing LDPC codes of girth 8 based on a
multidimensional integer lattice.

2.1 Multidimensional Finite Lattice

Take a subset of the integer lattice of dimension
m defined by

Gm = {('Ul...'l)m) : 0 S V1 S dl — 1,...,0 S
U < dpy — 1)}

and assume wlg that d; < ds...d,,

where (dy,...,d,) is the depth of the lat-
tice taken in each of the m dimensions, denoted
(Dy,...,Dy,), and (vy...v,) is a point in the
lattice. The total size of the lattice is given by
n = dy; X dy X -+ X d,, points. All operations in
the lattice are conducted mod d; in each dimension
D]', 1 S j S m.

Addition and scalar multiplication are defined:

(al,az,...,am) + (bl,bz,... bm) = ((Il +
bl,ag -+ bg,...,am + bm) and a(al,...,am) =
(aay,...,aan).

Lines can be drawn in the lattice. A line of
slope S = (s1, 82, .., Sy) through a point v is the



collection of points v; such that v; = v; + oS, for
any integer a.

2.2 Multidimensional Lattice Codes

Define a sub lattice G,,,_; by setting v; = 0;

Gm—l == {('Ul,...,’Um) U1 = 0,0 S (%) S d2 -
1,...,0< v, <dn—1)}

Through each of the n/d; points in G,,,—; draw
a line section of slope S = (1, s, ..., 8;,) given by
L,(S) = {z,vs + $2,...0p + Sz} Where z =
0,...,d; — 1. This bundle of parallel line sections
partitions G,, into n/d; sets containing d; points
each.

An LDPC code can be created by associating
each point in GG, with a variable node and each line
section with a constraint node. A H matrix can be
constructed by including a variable j in a constraint
k iff the point associated with j is contained in
the line associated with k. A bundle of parallel
line sections of slope S; generates a matrix H; of
column weight 1 and row weight d;. Taking p such
bundles can generate a H matrix of column weight
p given by

H,

H,

H= ey

H,

Definition 2.1

J slopes S1,S,,...,8S; are linearly independent
iff there do not exist integers ai, s, ..., oy, such
that a1 S1 + Sy + -+ + CI(]'S]' = (0,0,...,0),
(al,...,aj) 75 (O,...,O), —dj <a; < dj

Choosing the slopes 51, ..., .S, subject to certain
constraints gives the code some desirable properties.

Constraint 2.1 The slopes chosen span the ge-
ometry.

Constraint 2.2 No group of three slopes are
linearly dependant.

Constraint 2.3 The element of each slope in each
dimension is relatively prime to the depth of the
dimension, i.e s; and d; have no common factors
forall 1 <j <m.

Example 2.1

A 4 dimensional finite lattice of size 6 X 6 x 6 X 6.
4 bundles of parallel lines are drawn with slopes;

S. 1000
S| [1100
s.|=l1010 )
S, 100 1

Each line contains 6 points. This example gives
a regular code with 1296 variable nodes and 864
constraint nodes. As not all rows of H are linearly
independent, there are 625 information bits per
codeword giving the code a rate of 48.2 percent. The
column and row weights are 4 and 6 respectively. It
can easily be shown that any three of the bundles of
parallel lines chosen are linearly independent so no
loop of length 6 can exist, giving the code a girth of
8, see theorem 2.2. This code was used in compiling
the results in Fig 3.

Theorem 2.1

LPDC codes of this construction have no cycles
of length 4.

Proof

A 4 cycle in an LDPC code exists when 2 variable
node share 2 or more constraint nodes in common.
This results from the lattice geometry construction
when 2 or more lines contain a pair of points in
common.

Assume v,, v, € Li,Ly where Lis = v1o +
xS12,0 <z < d; — 1. Taking the line Ly;

vV, = U1 + Sy

Vp = VU1 + 551

U — 0y = (= B)S1 =715

similarly for Lg; vy — vy = AS3

combining gives 7.5, — ASs = 0 which violates
the linear independence of constraint 2.2.

Theorem 2.2

If the slopes are chosen so that no group of three
slopes is linearly dependent i.e. a.S;+3S,+7S; # 0
for all 1 < 5.kl < p, a,B,7 € Z the resulting
LPDC code has no cycles of length 6.

Proof

Similar to the previous proof, three nodes, v,, v
and v, participating in a 6 cycle will give rise to

equations
Vg — Vp = S
Vp — Ve = 52
Ve — Vg = 753

Combining these equations gives a.S; + 3Sy +
vS; = 0 which violates the linear independence
condition.

Theorem 2.3

No Pair of variable nodes is joined by a single
path of length 4.

Proof

Consider a set of variable nodes v; and v, con-
nected by a path of length 4. There must exist an
intermediate variable node vz such that v; +a.5; =



vg and v3 + b.Sy = vy for some a,b € 0...d; — 1.
A second path of length four exists between these
nodes given by v; + b.S3 = vy and vgq + a.51 = vs.
By constraint 2.2, aS; # bS,. Thus there cannot
be a single path of length 4 between two variable
nodes.

Comment 2.1

As some variable nodes in a non-disjoint graph
must be joined by a path of length four and such
paths cannot occur singly this result proves that
cycles of length 8 exist. Combined with theorems
2.1 and 2.2, theorem 2.3 proves that the girth of
Multidimensional Lattice Geometry codes is 8.

Theorem 2.4

In the case where no four slopes are linearly
dependant each pair of variable nodes is joined by
either zero or exactly two paths of length 4.

Comment 2.2

This case includes the group of codes where p =
m which is the group of codes with the highest rate
achievable by this construction.

Proof

Combining equations from theorem 2.3 gives
a.S1 + b.S9 = v; — vy. Assume there is a third
path of length four between two variable nodes,
as above this path would give rise to an equation
c.S3 +d.Sy = vy — vy for some ¢,d € 0...d; — 1.
Adding these gives:

S1 0
Sa _ 0
(a b ¢ d ) ss 1= 1o 3)
Sy 0
for some

(a bcd)#(0000) @)

This violates the condition that any four slopes
are linearly independent. Therefore there cannot be
any third path of length four between v; and vs.

Theorem 2.5

In the case where no four lines in the geometry
are linearly dependant the number of proper cycles
of length 8 in the code is given by (p(p — 1)(d; —
1)2n)/8

Proper cycles of length 8 are defined as distinct
sets of four variable nodes which participate in a
length 8 cycle.

Proof

Consider the tree expansion centered on a vari-
able node v, Fig 1.

1 variable node

p constraint nodes

p(d;-1) I:] e -
variable nodes 1%, SN S . &1
p(p-1)(d;-1) ® ¢ ¢ ®
constraint nodes -'5'3‘ N .' - S .."g”..
oD [ OO0
variable nodes
Fig. 1. Tree expansion of a Multidimensional Lattice Code about

node v

The first line of this expansion consists of the p
constraint nodes directly connected to v. The second
line of p(d; — 1) variable nodes, all of which are
unique as there are no cycles of length 4 in the code.
The third line consists of p(d; —1)(p—1) constraint
unique nodes. They are all unique as any repetition
would give rise to a cycle of length 6 in the code.
The fourth line consists of p(p—1)(d; —1)? variable
nodes. By theorem 2.4, these nodes must consist of
(p(p—1)(dy —1)%)/2 unique nodes, each occurring
twice. A path of length 8 passing through v can
be traced between each pair, representing a length
8 cycle. The variable node v therefore participates
in (p(p — 1)(dy — 1)?)/2 proper cycles of length 8.
Multiplying by, n, the number of nodes and dividing
by four, as each cycle contains four variable nodes,
gives the total number of proper eight cycles as
(p(p —1)(d1 — 1)*n)/8

Theorem 2.6

The minimum distance of finite geometry codes is
lower bounded by d,;, > 2™

Proof:

It is equivalent to prove that no non-zero code-
word exists with Hamming weight less than 2™. We
shall prove this by induction on m, the dimension
of the geometry.

First, take the case where m=1. This lattice
consists of d; points which lie in a straight line.
Any non-zero codeword must contain at least one
non-zero element. As this non-zero element must
participate in at least one parity check equation for
the code to be non-disjoint, there must be at lease
one further non-zero element for that equation to be
satisfied.

Therefore, in the case m = 1, the shortest non-



zero codeword must have a Hamming weight of

Now take an k dimensional lattice, G, and a
k — 1 dimensional sub lattice, G;_; of minimum
distance di,f;’;l‘l). For the code to be non-disjoint
there must be at least one bundle of parallel line
sections in Gy, passing through Gj_. Constraint 2.3
ensures that each line section contains only 1 point
in Gj_;. For the associated parity-check equations
to be satisfied, each non-zero element in a codeword
over (G;_; must give rise to at least one further
non-zero element in a codeword over GG;,. Therefore,
the codeword with hamming weight d,(f;’;‘l) in G4
gives rise to a codeword of weight dffi’;l) > 2d£fi’;‘1).

Therefore, by induction on m, for an m dimen-
sional geometry d,,;, > 2™.

Extended Multidimensional Lattice Codes

The Multidimensional Lattice Codes described
above have the constraint that the slope in the
dimension D, takes the value 1. By removing this
constraint the number of slopes meeting constraint
2.2 increases giving a wider range of code rates for
a given value of m.

Irregular codes can be produced by varying the
depth of the lattice in each dimension, however
this paper shall deal with regular codes where the
depth of the lattice in each dimension is a constant,
d. Theorems 2.1 to 2.6 remain valid for regular
Extended Multidimensional Lattice Codes as they
are not dependant on the slope in dimension D;.

These codes can be viewed as a transfer of the
work of [2] and [4] from Euclidian Geometries to
the Finite Lattice.

Example 2.2

Fig 2 shows a 2 dimensional finite lattice of
size 3 x 3. 2 bundles of parallel lines are drawn.
Each line contains 3 points. This is example gives a
regular code with 9 variable nodes and 6 constraint
nodes. The column and row weights are 2 and 3
respectively. It can easily be seen that the bundles
of parallel lines chosen are linearly independent so
no loop of length 6 can exist, see theorem 2.3. The
shortest cycle in this code is of length 8 and a cycle
of length 8 is highlighted. As the H matrix of this
code has a column weight of 2 it is impractical
in real communication systems. It is shown for
illustrative purposes.

For clarity, the variable nodes are numbered and
the H matrix of this code is reproduced below.

-

(0,1)
Length |

8 loop
$

(0,0)

*

(1,0),

(2,0

Fig. 2. A finite geometry of size 3 x 3 showing two linearly inde-
pendent bundles of parallel lines. A cycle of length 8 is highlighted.

111000000
000111000
000000111

H=1 1700100100 ®)
010010010
001001001

Example 2.3

A 4 dimensional finite lattice of size 8 x 8 x 8 x 8.
5 bundles of parallel lines are drawn with slopes;

S, 1000
S, 0100
S. |=10010 (6)
Sy 0001
S, 1111

Each line contains 8 points. This example gives
a regular code with 4096 variable nodes and 2560
constraint nodes. As not all rows of H are linearly
independent, there are 2101 information bits per
codeword giving the code a rate of 51.3 percent. The
column and row weights are 5 and 8 respectively. It
can easily be shown that any three of the bundles of
parallel lines chosen are linearly independent so no
loop of length 6 can exist, giving the code a girth of
8, see theorem 2.3. This code was used in compiling
the results in Fig 4.
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Fig. 3. BER for length 1296 rate 0.48 code.

III. RESULTS

In this section, error correcting performance is
demonstrated for the two example girth-8 codes
given in examples 2.1 and 2.3. BPSK transmission
over the AWGN channel was assumed, and in each
case decoding continued until either a valid code-
word was detected or a maximum of 20 iterations
were completed.

Fig 3 shows the performance of the length 1296
code of example 2.1. The 1296 x 864 parity check
matrix has a rank of 625, giving the code a rate of
48.2%. The second code tested is given by example
2.3. Its 4096 x 2560 H matrix has a row rank of
2101, giving a rate of 51.3%. Its performance is
given in Fig 4.

IV. CONCLUSION

Two classes of regular LDPC codes based upon
finite integer lattices have been presented. These
codes were shown to exhibit desirable properties
such as a girth of eight in the Tanner Graph, a lower
bound on the minimum distance and, given certain
constraints, a sparsity of eight cycles.
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